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Abstract

Inspired by the idea of interacting intelligent agents of a multi-agent system,
we introduce a multi-agent based optimization method applied to the quadratic
assignment problem (MAOM-QAP). MAOM-QAP is composed of several agents
(decision-maker agent, local search agents, crossover agents and perturbation
agent) which are designed for the purpose of intensified and diversified search
activities. With the help of a reinforcement learning mechanism, MAOM-QAP
dynamically decides the most suitable agent to activate according to the state of
search process. Under the coordination of the decision-maker agent, the other
agents fulfill dedicated search tasks. The performance of the proposed approach
is assessed on the set of well-known QAP benchmark instances, and compared
with the most advanced QAP methods of the literature. The ideas proposed in
this work are rather general and could be adapted to other optimization tasks.
This work opens the way for designing new distributed intelligent systems for
tackling other complex search problems.

Keywords: Multi-agent based optimization; cooperative search; heuristics;
quadratic assignment; combinatorial optimization.

1. Introduction

The quadratic assignment problem (QAP) is one of the most popular com-
binatorial optimization problems with a number of practical applications like
planning, backboard wiring in electronics, analysis of chemical reactions for
organic compounds, design of typewriter keyboards balancing turbine runners
(Burkard, 1991; Duman & Or, 2007). The QAP is known to be computationally
difficult since it belongs to the class of NP-hard problems (Sahni & Gonzalez,
1976).

QAP was initially introduced to formulate the location of a set of indivisible
economical activities. Given a flow f;; from facility ¢ to facility j for all 4,7 in
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{1,2,...n} and a distance d,; between locations a and b for all a,b in {1,2,...n},
the QAP is to assign the set of n facilities to the set of n locations while min-
imizing the sum of the products of the flow and distance matrices. Let II be
the set of the permutation functions m: {1,2,..n} — {1,2,...n}. The QAP is
mathematically formulated as follows:

MinimizezenF (m) = ZZ Jijdnin; (1)
i=1 j=1

The computational challenge of the QAP has motivated many solution ap-
proaches including exact methods like (Erdogan & Tansel, 2007; Hahn, Grant,
& Hall , 1998) and numerous heuristic methods. Among the most representative
heuristic methods, we can mention the popular robust tabu search algorithm
(Ro-TS) (Taillard, 1991), the memetic algorithm (Merz & Freisleben, 2000),
the improved hybrid genetic algorithm (IHGA) (Misevicius, 2004), the iterated
tabu search algorithm (ITS) (Misevicius, Lenkevicius, & Rubliauskas, 2006),
the population-based iterated local search (PILS) (Stiitzle, 2006), the hybrid
genetic algorithm MRT (Drezner, 2008), the cooperative parallel tabu search
algorithm (CPTS) (James, Rego, & Glover, 2009), the breakout local search
(BLS) (Benlic & Hao, 2013) and the memetic search algorithm (BMA) (Benlic
& Hao, 2015). These methods generally perform well on a number of benchmark
instances. Yet, no single method clearly dominates all other methods.

In this work, we investigate a new solution approach for the QAP based on
the principles of multi-agent systems (MAS). Our work is motivated by appeal-
ing features of a MAS which could be advantageously used to elaborate intel-
ligent computing systems (Martin, Ouelhadj, Smetb, Beullens, & Ozcan, 2013;
Guo, Goncalves, & Hsu, 2013; Gongalves, Guimaraes, & Souza, 2014; Satunin
& Babkin, 2014; Couellan, Jan, Jorquera, & Georgé, 2015; Baykasoglu & Ka-
planoglu, 2015; Wang & Wang, 2015; Zheng & Wang, 2015). Compared with
the existing studies on the QAP, this work has the following main contributions:

e The proposed algorithm is the first distributed method for the QAP that
adopts multi-agent systems as a source of inspiration for optimization.

e The proposed algorithm integrates a set of collaborative agents (local
search agents, crossover agents, perturbation agent) which are managed
dynamically by a distributed model to ensure a suitable balance of inten-
sification and diversification of the given search space.

e Decision making is based on reinforcement learning which is used to adjust
the probability of applying dedicated actions to trigger specific agents
under specific conditions.

e We show the viability of the proposed approach by presenting computa-
tional results on the set of 135 well-known QAP benchmark instances.

e The proposed approach is general and could be adapted to design dis-
tributed intelligent systems for other complex search problems.



The rest of the paper is organized as follows. Section 2 is dedicated to liter-
ature review. Section 3 describes the proposed distributed algorithm. Section
4 shows computational results and comparisons with representative QAP algo-
rithms of the literature. An analysis of the proposed algorithm is also provided.
In the last section, we provide concluding comments and research perspectives.

2. Literature review

In this section, we first present a brief summary of some of the most rep-
resentative heuristic algorithms for the QAP. These algorithms will be used as
reference methods for our computational study. Note that none of these QAP
approaches can be considered as the most effective method for all QAP bench-
mark instances, due to the differences in structures of the QAP benchmark
instances. We also provide a literature review of some recent applications of
multi-agent systems for solving search problems.

The robust tabu search (Ro-TS) algorithm proposed by Taillard (1991) is an
early and influential heuristic. Ro-TS employs the swap move which exchanges
two elements of a solution (a permutation). The tabu list forbids the reverse
exchange of a swap move during the next h iterations. The tabu tenure h varies
randomly within a given interval. The most important new feature introduced
in Ro-TS is that a complete swap neighborhood is explored in O(n?) instead of
O(n?) as in previous algorithms. We use this technique in our algorithm.

The improved hybrid genetic algorithm (IHGA) is presented by Misevicius
(2004). THGA integrates a robust local improvement procedure and a new opti-
mized crossover. The optimized crossover uses M runs of an uniform crossover
to produce a child that has the best fitness value. The offspring is then im-
proved with a tabu search procedure and a solution reconstruction procedure.
The reconstruction is achieved by performing a number of random swaps. IHGA
uses also a shift mutation, which simply shifts all the items of the solution in a
wrap-around fashion by a predefined number of positions. Later Misevicius et al.
proposed an iterated tabu search (ITS) (Misevicius, Lenkevicius, & Rubliauskas,
2006) which iterates between a traditional tabu search and a perturbation phase
in order to escape an attained local optimum.

The particular population-based iterated local search (PILS) proposed by
Stiitzle (2006) is an extension of iterated local search (ILS). The algorithm ap-
plies the don’t look bit strategy, inspired by local search algorithms for the TSP.
When a local optimum is attained, ILS executes a perturbation move that ex-
changes k randomly chosen items. In PILS, the population contains p solutions
and in each iteration ¢ new solutions are generated. The new population of p
solutions is created from the p former solutions and the ¢ new solutions.

The cooperative parallel tabu search algorithm (CPTS) introduced by James,
Rego, & Glover (2009) applies in parallel several tabu search (TS) runs on mul-
tiple processors. The TS procedure is the same as Ro-TS (Taillard, 1991), but
uses different stopping conditions and tabu tenures for each processor. The
cooperation and information exchanges between the TS processes are realized
with the help of a global reference set.



The Breakout Local Search (BLS) described by Benlic & Hao (2013) is based
on a local search phase and a dedicated perturbation phase. The local search
phase aims to reach new local optima while the perturbation phase is used to dis-
cover new promising regions. The perturbation mechanism of BLS dynamically
determines the number of perturbation moves and adaptively chooses between
two types of moves of different intensities depending on the current search state.
Perturbations are either guided by using a tabu list or simply based on random
moves. BLS is later integrated into the memetic search framework in Benlic &
Hao (2015). BMA combines BLS as local optimizer, a crossover operator, a pool
updating strategy, and an adaptive mutation mechanism. BMA outperforms its
local search component (BLS).

In this work, we introduce a new multi-agent optimization method for the
QAP (MAOM-QAP) inspired by multi-agent systems. The proposed method is
motivated by specific features offered by MAS like distributed computing, agent
cooperation and dynamic decision making. Indeed, multi-agent systems have
been successfully applied to solve many challenging and divers problems encoun-
tered in various settings. The review below, which is by no means exhaustive,
aims to describe some recent MAS-related studies to illustrate the interest of
MAS for building expert and intelligent systems for problem solving.

In (Gongalves, Guimaraes, & Souza, 2014), the authors presented an evolu-
tionary multi-agent system to solve the join ordering optimization problem of
queries in relational database management systems in a non-distributed envi-
ronment. For this, they defined a working environment composed by a set of
collaborative agents, where each agent is designed to find the best solution, i.e.
the best join order for the relations in a query. Interesting results are reported
with the proposed approach.

Satunin & Babkin (2014) tackled a challenging design problem raised in
flexible public transportation systems, i.e., the design of demand responsive
transport systems (DRT) which aims to provide a share transportation services
with flexible routes and focus on optimizing economic and environmental values.
The proposed approach uses a distributed multi-agent system to model DRT
where various autonomous agents represent interests of systems stakeholders.
The authors reported very interesting results with the proposed approach.

Baykasoglu & Kaplanoglu (2015) developed a multi-agent based approach
for a load/truck planning problem in transportation logistics. The proposed
approach is characterized by its cooperative structure which is motivated by real-
world third party logistics company operations and uses negotiation mechanisms
among the agents to handle the dynamic events. The solutions obtained by using
the proposed approach demonstrate the usefulness of the approach in providing
high-quality solutions while generating real-time schedules.

Couellan, Jan, Jorquera, & Georgé (2015) are interested in solving chal-
lenging optimization problems raised in training problems of Support Vector
Machines (SVM). They observe that multi-agents systems are able to break
down a complex optimization problem into elementary oracle tasks which are
solved by performing a collaborative solution process. Based on this observa-
tion, they proposed a multi-agent system to solve the basic SVM training prob-



lem and provide several perspectives for binary classification, hyperparameters
selection, multiclass learning as well as unsupervised learning.

Zheng & Wang (2015) proposed a multi-agent optimization algorithm for
solving the resource-constrained project scheduling problem. The proposed al-
gorithm uses multiple agents working in a grouped environment where each
agent represents a feasible solution. The evolution of agents is achieved by us-
ing four main elements, i.e., social behavior, autonomous behavior, self-learning,
and environment adjustment. The comparisons to the existing algorithms demon-
strate the effectiveness of the proposed algorithm.

Wang & Wang (2015) considered the scheduling problem of the final testing
process which ensures the quality of the products in the semiconductor man-
ufacturing factory. They presented an effective knowledge-based multi-agent
evolutionary algorithm where each agent represents a solution, which is a com-
bination of the operation sequence vector and the machine assignment vector.
Agents evolve by mutual-learning and competition based on a model of agent
lattice. A knowledge base is employed to store the useful information during
the search process for the purpose of generating new agents in the competition
phase.

Our work shares similarities with these previous studies in the sense that it
is based on the general framework of multi-agent systems. On the other hand,
the proposed work, as described in the next section, distinguishes itself by some
particular features including the distributed and collaborative architecture, the
design of both intensification and diversification agents as well as the decision
making method based on reinforcement learning.

3. A multi-agent optimization method for the QAP

A multi-agent system (MAS) is typically composed of a group of interacting
agents where each agent has one or more basic skills (Weiss, 2013). The agents
of a MAS can collectively find solutions to a difficult problem even if each agent
alone cannot solve the problem. In this work, we are interested in using MAS
as a source of inspiration to create a Multi-Agent Optimization Method applied
to the QAP (MAOM-QAP).

3.1. MAOM-QAP architecture

The proposed MAOM-QAP model contains the following agents: decision
maker agent, local search agents (and their perturbation agent) and crossover
agents. Figure 1 illustrates the general MAOM-QAP architecture, whose com-
ponents are presented in the following sections. Algorithm 1 describes the gen-
eral MAOM-QAP procedure. In addition to the above agents, the MAOM-QAP
model relies on learning-based weight matrices for decision making. By linking
a set of conditions and a set of actions, such a matrix helps a agent to know
the agents with which it will communicate, according to the state of the search
process.
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Figure 1: Agent communication in MAOM-QAP

m | A2 | Aa
c1 wit fwi2 | o fwia
c2 w21 (w22 | .. w2,a
Cc wel fwe2 | o We,a

Figure 2: Structure of the weight matrix

8.2. Weight matrix with reinforcement learning

In the proposed MAOM model, some agents (decision maker agent and local
search agents) need to decide when to activate other agents and which agents to
activate. Such decisions are made based on a weight matrix (i.e., decision ma-
trix) which is dynamically adjusted by a reinforcement learning process. This
technique allows to adapt the search strategy according to the experiences ac-
quired during the search process. For instance, after the application of an
intensification action (e.g., ensured by a local search agent), if the search is ob-
served to be stagnating (e.g., captured by the condition the best solution is not
improved for a high number of iterations’), the applied action should be avoided
for the next search step and an action ensuring more diversification should be
favored. Inversely, if the applied action leads to a search progress (e.g., captured
by the condition ’the best solution is just improved’), the same action should
be given a high chance to be applied again (notion of reward).

Following Guo, Goncalves, & Hsu (2013), we use a pair (condition, action)
to represent the decision rules. The condition part corresponds to the necessary
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Figure 3: An example of reinforcement learning with the weight matrix. We suppose that
the current condition is C3 (e.g., the local best solution has been improved during the last
20 generations). Under this condition, action Al (e.g., to activate local search agents) is
applied for the current generation (this action has the highest weight value in the matrix) and
obtains a further improvement. Then, reinforcement is applied by adjusting the weight W31
to augment the chance of selecting again the applied action under this condition (e.g., W31 =
3% 0.5+ 1=2.5). Meanwhile, the weight W32 is decreased by u (e.g., W32 =1 x 0.5 =0.5)

prerequisite to trigger an associated action, the action part indicates which ac-
tion is to be performed. Let C be the set of conditions and A the set of actions
to perform. For a condition Cj, a weight W;; (initialized to 0) is associated to
each action A;. The conditions are defined based on the improvement situation
occurred at the end of each search generation (i.e., one while iteration in Algo-
rithm 2). The weight matrix (i.e., decision matrix) W is used to dynamically
influence the probability of applying each action under each condition.

Given the weight matrix W (see Figure 2 for an example), we use the fol-
lowing equation (Guo, Goncalves, & Hsu, 2013) to calculate the probability
P(C;, A;j) of applying action A; € A under condition C; € C.

M/’LH
P(CiA) = 3 2

At the beginning of each generation, the improvement situation is associated
with a default condition. Then, according to the weight matrix, the appropriate
action for this condition is selected according to the probability given by Eq. (2).
At the end of each generation, the performed action is evaluated with respect
to its condition and the concerned weight value is increased if an improvement
in solution quality is obtained in this generation. We use a credit assignment
to perform reinforcement learning in order to identify the beneficial experiences
and determine a reward for them. Here, an experience is represented as a triplet
(condition C;, action Aj;, improvement V). When a new best local or global
solution is found, the weight value W;; which is related to the action of this
generation is reinforced by adding a reward rate o to W;;. Before adding the
reinforcement value, all the weight values W;; in the decision matrix is decreased
with an evaporation value p, in order to enlarge the influence of the new reward
obtained in the current generation. The reinforcement with reward o is then



performed using the following equations (Guo, Goncalves, & Hsu, 2013):
Wij =W X WZI] +o (4)

where W/, is the weight value before adding the reinforcement o, W/} is the
weight value before the evaporation u, and o is the learning factor.

Figure 3 shows an illustrative example of this reinforcement learning pro-
cess (More information about the example are given in Section 3.4.1). In the
proposed MAOM-QAP approach, such a matrix is used by the decision maker
agent (Section 3.4) and the local search agents (Section 3.5). The respective

conditions and actions used by these agents are provided in these sections.

3.3. MAOM-QAP procedure

The general MAOM-QAP procedure is summarized in Algorithm 1. The
decision maker agent initiates the search with a random feasible solution. Based
on the weight matrix explained in the previous subsection, MAOM-QAP decides
to trigger either the local search agents or the crossover agents. As a result, one
of the two following cases occurs.

Algorithm 1 MAOM-QAP General Procedure.

Require: Four types of agents: one Decision Maker agent, two Local Search agents,
one Perturbation agent, two Crossover agents
Ensure: Best information (i.e., solution) found which is a vector Viest of location-
facility assignments
1: The decision maker agent is active until it needs exchanging with local search
agents or crossover agents (Algorithm 2)
2: if The decision maker agent decides to trigger local search agents then
3:  The local search agents are activated and the decision maker agent waits for
new information from them (Algorithm 3)
4:  if A local search agent requests help from the perturbation agent then
5: The perturbation agent is activated and the local search agent is blocked until
it receives information from the perturbation agent (Section 3.6)
6: The perturbation agent is killed after sending information to the correspond-
ing local search agent
end if
if A local search agent requests help from the other local search agent then
The requesting local search agent is blocked until it receives information from
the other local search agent (Algorithm 3)

© %o

10:  end if

11:  The local search agents are killed after sending information to the decision maker
agent

12: end if ) )

13: if The decision maker agent decides to trigger crossover agents then

14:  The crossover agents are activated and decision maker agent waits for new in-
formation from the crossover agents (Section 3.7)

15:  The crossover agents are killed after sending information to the decision maker
agent

16: end if

17: Return best information found Vpes:

Case 1: Local search agents are triggered. This case corresponds to the
situation where the decision maker agent decides that a more intensified search is



needed considering the current search state. For this, it triggers the local search
agents by sending them the current solution (lines 10-11 of Algorithm 2). Each
local search agent looks for the best solution in the predefined neighborhood for
q iterations by applying a tabu search procedure. Each agent uses a different
neighborhood structure and starts with the solution received from the decision
maker agent (lines 6-11 of Algorithm 3).

After an iteration (i.e., one while iteration in Algorithm 3) of the local search

agent concerned, each local search agent decides whether it needs to commu-
nicate with the other local search agent or it can continue its process without
information exchange. This decision depends on another weight matrix @ (see
Section 3.5). @ has the same mechanism as the weight matrix of the decision
maker agent, but here, the actions to be performed are either to trigger another
local search agent (for intensification) or a perturbation agent (for diversifica-
tion). When the search needs to be intensified, the agent concerned calls another
intensification-oriented local search agent and remains blocked until it receives
the best solution sent by the other local search agent. Thereafter, the requesting
agent completes its search starting with the solution received. When the desired
action is about diversification, the perturbation agent is triggered (lines 15-25 of
Algorithm 3). This agent performs one of two types of perturbations (reduced
and strong perturbations) with the purpose of helping the local search agents
to move towards new search areas. According to whether the requesting local
search agent needs a small or large diversification, either a reduced perturbation
or strong perturbation is performed. The new solution from the perturbation is
passed to the local search agent to continue its search. The local search agents
executes for a number of iterations by exchanging information as we just ex-
plained (lines 27-28 of Algorithm 3). The best solution obtained is forwarded
to the decision maker agent (line 42 of Algorithm 3). The decision maker agent
records the solution received in an archive that represents a common memory
shared by all agents in the algorithms (lines 17-30 of Algorithm 2).
Case 2: Crossover agents are triggered. If the crossover agents are ac-
tivated (lines 13-14 of Algorithm 2), two crossover agents are applied to two
parent solutions (which are randomly selected from the archive) to create two
offspring solutions (Section 3.7). Thes offspring solutions are sent to the decision
maker agent which stores them in the archive if they are of good quality.

The decision maker agent uses the current best solution found so far to start
the next cycle (generation) of the algorithm. The values of the weight matrix
are updated according to the new state reached during the last generation, in
order for the decision maker agent to activate the appropriate agents for the next
generation. This search process is repeated until a stop condition is satisfied
(e.g., a maximum number of generations) and the best solution discovered is
retained as the final result.

3.4. Deciston maker agent

The decision maker agent is the coordinating agent. According to the deci-
sion making matrix W (Section 3.2), the decision maker agent decides whether it
triggers the local search agents (for more intensification) or crossover agents (for



more diversification). It records the high-quality solutions which are discovered
during the search in the shared memory (archive) (Algorithm 2).

The decision maker agent thus exchanges information with the local search
agents and the crossover agents. The decision maker agent stays alive until
reaching a stop criterion (a cutoff time limit, a allowed number of generations).
During its life, it is blocked when other agents are activated. So, it has only one
life cycle.

Algorithm 2 Decision maker agent behavior

Require: n by n distance matrix d and flow matrix f

Ensure: A vector Vpes: of facility locations

: V < Random_permutation(n) {Random initial facility location assignment}
: Viest — V' {Vhest records the best solution found so far}

¢ Chest — F {Fpest records the best objective value reached so far}

opt <+ 0 {opt is the counter for consecutive non-improving local optimum}
W <0 {Initialization of the weight matrix of the decision maker agent}

pop < 0 {pop is the archive of elite solutions found during the search}

: while Stopping condition not reached do

Update W {Sections 3.2 and 3.4.1}

9:  Action_type < Select an action (agents) to activate based on W {Section 3.4.1}
10:  if Action_type = Local search agents then

R ND Wy

11: Activate the local search agents and send V' to the local search agents
12:  else

13: Activate the crossover agents and send V' to the crossover agents

14: opt < 0

15:  end if

16: Vi« 0, Vo «< @ {Vi and V, are two solutions received from the activated
agents, initialized to empty}
17: if Vi # 0 AND Va # 0 then

18: if F(Vh) > F(V2) then

19: VW

20: else

21: V Vs

22: end if

23: tr < Exist(Vi, Va,pop) {Check if V1 and/or V; are in the archive pop}
24: if tr = false then

25: Add Vi and/or Va to pop {Add both solutions or one of them in pop}
26: end if

27: Let V'’ be the best solution between Vi and Va

28: if F(V') < Fyest then

29: Vbest <~ V/v Fbest < F(V/)

30: else

31: opt=opt+1

32: end if

33:

else
34: Block this agent {Decision maker agent waits for solutions from other agents}
35:  end if

36: end while

37: Return Fyese and Vies:

3.4.1. Conditions and actions

During the search process of our algorithm, three types of solutions are used
to define conditions for agent activation: the local current solution obtained
by each agent, the local best solution obtained by each agent and the global
best solution obtained among all agents in the process. The weight matrix of

10



the decision maker agent is composed of four different conditions which cover
significant situations that may occur during the search process:

e (7 = The algorithm does not reach gy generations (cycles);

e (5 = The local or global best solution is improved in the recent g; gen-
erations and this improvement is a small improvement in the objective
function value F’;

e (35 = The local or global best solution is improved in the recent g; gen-
erations and this improvement is a large improvement in the objective
function value F’;

e C; = The global best solution has not been improved in the recent go
generations. This solution is a deep local optimum or an optimum solution.

where go, g1 and go are parameters set by the user according to the total allowed
generation number or total run time.
The set of actions are:

e A; = Activating the local search agents;
e Ay = Activating the crossover agents;

At the beginning of the search or when there is a large improvement obtained
by the application of an action between two successive generations (this corre-
sponds to the situations of C; and Cj3), the search progresses well and in this
case, it is appropriate to make intensified search by triggering the local search
agents. If the decision maker agent observes no improvement or an insignificant
improvement (this corresponds to the situations of Co and Cy), the search is
stagnating and needs to be diversified by activating the crossover agents.

After each generation (i.e., when the activated agents return their found
solution), the decision maker agent updates its weight matrix as explained in
Section 3.2. Figure 3 illustrates how the weight matrix is changed by the re-
inforcement learning procedure. We suppose that in iteration ¢ of Algorithm
2, the current condition Cj is verified (i.e., the local best solution is greatly
improved in the recent g1 = 20 generations). Under this condition, action A;
which corresponds to activating local search agents is applied for the current
generation. Reinforcement learning is applied by modifying the weight W3, to
augment the chance of selecting the corresponding action under this condition.
In Figure 3, we show for this example, the initial weight matrix (left), and the
matrix (right) after the update with a reward value ¢ = 1 and an evaporation
value p = 0.5.

8.4.2. Archive of elite solutions

The decision maker agent records the best solutions discovered during the
search in an archive. These solutions are generated and submitted by the local
search agents and crossover agents. Even if the archive is shared by all the

11



agents of the model, only the decision maker agent is responsible to update the
archive. Each time the decision maker agent receives a new solution, it adds
the solution in the archive if the solution is of good quality and is not present
already in the archive.

3.5. Local search agents

The local search agents are designed for intensification. During its life time,
a local search agent employs a neighborhood to search for improved solutions.
During the search, each local search agent can decide, with the help of its weight
matrix, to exchange information with another alive local search agent or with
the perturbation agent depending on its state of search. At the end of each local
search agent run, the best solution found by the agent is sent to the decision
maker agent. For the QAP, we use two local search agents which are both based
on tabu search (Glover & Laguna, 1997) and apply two different strategies to
explore the swap-based neighborhood (See Algorithm 3). Below, we define the
used neighborhood, present the two neighborhood exploration strategies and
explain the conditions and actions employed by the local search agents.

12



Algorithm 3 Local search agent behavior

Require: Solution V; received from the decision maker agent, parameters: maxi-

mum allowed iterations iteration_max, improvement threshold interval, consecu-
tive non-improving iterations max_opt_LS

Ensure: A vector Viest_rs of facility locations

=W N

18:

19:
20:

21:

22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:

: V <V {V is the current solution found by each local search agent}
: Q + 0 {Q is the weight (decision) matrix of local search agents, Section 3.5.4}
: Tabu_List < § {Tabu_List is the tabu list, Section 3.5.3}
opt = 0 {opt is the counter for consecutive non-improving local optima for each
local search agent}
: Compute § {§ is the move gain matrix, Section 3.5.1}
Vi < Vi {V1 records the solution obtained in generation iteration-1}
: while iteration < iteration_-max do
V < Generate the best neighboring solution based on ¢ {Sections 3.5.1 & 3.5.3}
Update ¢ and T'abu_List
if F(V) S F(Vbest,LS) then
Voest_.Ls <V
else

opt = opt + 1
end if
if (F(V)— F(V1)) < interval or opt = maz_opt_LS then

{The local search agent is stagnating and needs helps from another local
search agent or the perturbation agent}
Vperturved < O {Vperturbea is the solution received from another agent (local
search agent or perturbation agent), initialized to empty}
Update @ {Update the weight matrix based on the improvement of the cur-
rent solution, Sections 3.5.4 & 3.2}
Action_exchange < Select the action (agent) to activate based on Q
if Action_exchange = Triggering perturbation agent with weak behavior
then
Activate the perturbation agent with reduced behavior and send it solution
1%
end if
if Action_exchange = Triggering the perturbation agent with strong behavior
then
Activate the perturbation agent with strong behavior
opt < 0
end if
if Action_exchange = Triggering other local search agent then
Request the current solution of other local search agent
end if
Let Vperturbea be the new solution received from any of the above exchange
if Vpe'rturbed 75 @ then
V Vpertu'rbed
Update ¢
else
Block this agent {This agent waits for a solution from other agents }

end if

else

Vi + V {Local search agent continues its exploration without exchanging
information with other agents}

end if
iteration = iteration + 1

41: end while o
42: Return Vpest_rs to decision maker agent
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3.5.1. Neighborhood

As explained in the introduction, a candidate QAP solution can be conve-
niently represented by a permutation 7 of {1,2,...n} where ; is the facility
assigned to location i. Let swap(i,j) be a move operator which exchanges the
facilities located at ¢ and j. Given a candidate solution 7, let 7’ = 7@ swap(i, )
be the neighboring solution of 7 obtained by exchanging the facilities m; and 7; of
locations ¢ and j. Then N(7) = {7’ : 7/ = n®swap(i, j),i,j € {1,2,..n},i # j}
is the set of neighboring solutions induced by the swap operator. To assess the
relative quality of a neighboring solution 7', i.e., the cost variation §(m,4,7) =
F(n') — F () between 7 and 7’ (also called the move gain of swap(i, j)), we use
the incremental technique proposed in (Taillard, 1991) which can be achieved
in O(n) in the worst case.

8.5.2. Neighborhood exploration strategies

Given this neighborhood, our local search agents employ two different strate-
gies to explore the neighboring solutions. Let m be the incumbent solution and
N () its neighborhood. Our first local search agent examines the whole neigh-
borhood N(7) (in O(n?®)) and retains the best neighboring solution which be-
comes the new incumbent solution. As such, this local search agent realizes a
highly aggressive exploitation of the neighborhood, ensuring thus an intensified
search. Our second local search agent operates slightly differently in two stages.
First, picks at random a location 7. Then it seeks the best location j which leads
to the highest swap(i,j) move gain. This neighborhood exploration strategy,
which is achieved in O(n?), leads to a less aggressive search. Yet, given the ran-
dom choice of one of the two locations to be exchanged, this strategy provides
the local search agent with an intensified search while ensuring some degree of
diversification at the same time.

3.5.8. Tabu list

Each local search agent uses a traditional tabu list to prevent the search from
revisiting a previously encountered solution. Each time a facility z; is displaced
from location i to a new location by a swap(i, j) move, x; is forbidden to move
back to location ¢ during the next h iterations. The iterations h is dynamically
determined by h = a x F(S)+rand(10) where rand(10) takes a random number
in {1, ....,10} and « is set to 0.09.

8.5.4. Conditions and actions

As explained at the beginning of this section, each running local search agent
can decide, with the help of a weight matrix, to exchange information with
another alive local search agent or with the perturbation agent depending on its
state of search. In this section, we present the conditions and actions employed
by the local search agents. The underlying weight matrices are managed by the
same technique of Section 3.2.

The set of the conditions are:
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e (7 = The local best solution is improved in recent g3 generations and this
improvement is a small improvement;

e (5 = The local best solution is not improved in recent g4 generations;

e (3 = The local best solution is not improved in recent g5 generations and
g5 > q4.

where g3, g4 and g5 are parameters set by the user according to the total gen-
eration number or total run time.
The set of actions are:

e A, = Activating other local search agent;

e Ay = Activating the reduced perturbation behavior in the perturbation
agent;

e A3 = Activating the strong perturbation behavior in the perturbation
agent.

Each condition promotes a certain action. Thus, when the condition C; is
met, one pursues an intensified search by activating other local search (A;).
When Cy (resp. Cs) is satisfied, the search needs to be diversified by triggering
the perturbation agent with reduced (resp. strong) behavior (Az or Asz). The
choice of the most suitable action is controlled by the corresponding weight
matrix of each local search agent.

3.6. Perturbation agent

The perturbation agent is triggered by an alive local search agent under
specific conditions (Ce and C3 of Section 3.5.4). Basically, this agent disrupts a
solution received from the calling local search agent. The disruption is achieved
by either a reduced perturbation behavior or a strong perturbation behavior.
The resulting solution is then sent back to the local search agent which uses the
perturbed solution as its new current solution. Since the perturbation agent
can be called many times, it can have several life cycles.

3.6.1. Reduced perturbation behavior

The perturbation agent can be triggered when a local search agent observes
a slight search stagnation (condition Cy of Section 3.5.4). From the solution
received from the local search agent, the perturbation agent performs a num-
ber of random swap moves to generate a new solution. This is achieved by
exchanging the locations of two facilities chosen randomly. Also, the number of
perturbation swap moves is chosen randomly between 1 and n/3 (n being the
number of facilities).
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Figure 4: An example for the first crossover operator used by the crossover agent

3.6.2. Strong perturbation behavior

The second case where the perturbation agent can be activated is when
it receives a request for strong perturbation from a local search agent. The
perturbation agent then employs the common archive of elite solutions to create
a new solution. From this archive, the perturbation agent extracts the number
of occurrence of each facility 7 assigned to location x;. Then, each facility i
is assigned to the location having the smallest occurrence number. Additional
data structures are employed to avoid the creation of the same solution for
future calls to the perturbation agent.

8.7. Crossover agents

These are agents for diversification. Each crossover agent performs a differ-
ent crossover operation to generate one offspring solution. Offspring solutions
are transmitted to the decision maker agent to serve as a new starting point for
the search process. For the QAP, we employ two crossover agents. In both cases,
two parents are selected randomly from the common archive. Each crossover
agent applies one of the following crossover operators.

e The first crossover operator consists in blending uniformly information
from the parents. Given two selected parents, the crossover operator
builds one offspring solution by alternatively transmitting location-facility
assignments from the parent. Specifically, starting with the parent having
the smallest objective value, we transmit the facility of the first location
(i.e., with index one) to the first location of the child and then remove
the assigned facility from both parents. For the second location of the
child, we switch to the other parent and transmit the facility (which may

16



perent Parentt ..n Paventt .. . n
peene - Parentz - . . Feene | ! | | |
ofsprna e . oreeme . -

Iteration 1: Start with parent1 with seleting Iteration 2: Select the next 2 locations {5,empty} Iteration 3: Select the next locations {4}
two successives locations {2,3}, then affect them from parent2, and affect them to the same positions from parent1 and affect it to the facility 5
to the same facilities {1,2) of child {3,4)

5

creprna . -

Iteration 4: Affect location 1(not yet selected)
to facility 4 (empty facility)

H

Figure 5: An example for the second crossover operator used by the crossover agent (2=2 in
this example)

be empty) of the second location (i.e., with index two) to the child. Then
we go back to parent one and repeat this process until reaching the last
location. Finally, the unassigned facilities of the offspring are affected
to a location randomly chosen among the set of the free locations. This
operator can be realized in O(n). See Figure 4 for an illustrating example.

e The second crossover operator has the same idea of the first crossover op-
erator, only the first z << n (a parameter) location-facility assignments
of each parent are transmitted to the offspring solution. The crossover
agent starts from the parent who has the smallest objection value to build
the child. It copies the z first location-facility assignments of this par-
ent into the child. Then, it extracts from the other parent, the next z
location-facility assignments and copies them to the child from the z + 1
locations. Finally, each unassigned facility is affected to a random unas-
signed location. This operator can be realized in O(n). See Figure 5 for
an illustrating example.

4. Experimentation

4.1. Ezxperimental results

This section presents experimental results of the MAOM-QAP algorithm
which is implemented in Java using the multi-agent platform Jade. The pro-
gram is run on a computer with a Core I5 2.5 GHz, 8GB of RAM. To as-
sess the MAOM-QAP algorithm, tests were realized on various benchmark in-
stances from the QAPLIB (http://www.seas.upenn.edu/qaplib/inst.html). The
instance size n varies from 12 to 150 (indicated in the instance name). The
QAPLIB archive contains 135 instances divided into four types:

1. Type I: Real-life instances obtained from practical applications;
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2. Type II: Unstructured and random instances for which the distance and
flow matrices are randomly generated based on a uniform distribution;

3. Type III: Randomly generated instances with structure that is similar to
that of real-life instances;

4. Type IV: Instances in which distances are based on the Manhattan dis-
tance on a grid.

Following Benlic & Hao (2015), we focus on the set of 21 most challenging
instances: 5 instances of type II, 5 instances of type III and 11 instances of
type IV. Since the remaining 114 instances, including all the real-life instance
of Type I, are easy for MAOM-QAP and other current QAP algorithms, they
are not included in the paper.

We adjusted the parameters of the proposed algorithms by an experimental
study. They depend on the type of the problem. The number of iterations for
each local search agent (iter_maz) is fixed to 1000. The parameter interval
that evaluates the improvement of the solution is fixed to 10000 for the decision
maker agent and the local search agents. The parameters go, g1, 92, 43, Q4
and ¢5, which are the numbers of generations responsible for controlling the
improvement of the search process(presented in Section 3.4.1 and Section 3.5.4),
are fixed respectively to 2, 10, 2, 20, 20 and 25. The parameter rate p used in
updating the weight matrices is fixed to 0.5. The stopping condition is the
elapsed time which we set to 12 hours for all the instance of size n < 100, and
to 24 hours for the large instances of size n >= 100. The best-known solutions
can be attained before these time limits.

We compare MAOM-QAP to seven best-known algorithms of the literature
reviewed in Section 2.

e Improved hybrid genetic algorithm (IHGA) (Misevicius, 2004);

o Iterated tabu search (ITS) (Misevicius, Lenkevicius, & Rubliauskas, 2006);
e Population-based iterated local search (PILS) (Stiitzle, 2006);

e A hybrid genetic tabu search algorithm (MRT60) (Drezner, 2008);

e Cooperative parallel tabu search (CPTS) (James, Rego, & Glover, 2009);
e The Breakout local search (BLS) (Benlic & Hao, 2013);

e The population-based Memetic Algorithm (BMA) (Benlic & Hao, 2015).

The main purpose of this assessment is to compare our results with the best-
known results even reported by any existing algorithms of the literature. Note
that these best best-known results, as well as those of the reference algorithms,
have been achieved by different algorithms under various conditions (different
stop conditions, computing platforms etc). As a result, the comparisons with
the existing methods are included only for indicative information.
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Table 1 reports our computational results along with those of five reference
algorithms on the unstructured instances (type II) and real-life like instances
(type III). The second column ‘BKS’ presents for each instance the best-known
objective value ever reported in the literature. For each algorithm, column §
shows the percentage deviation of the average solution, obtained with the con-
sidered algorithm over a certain number of trials, from the best-known solution.
If known, the success rate for reaching the best-known solution over several
trials is given in parentheses next to the value of the §. The CPU time (in min-
utes) is only given for indicative purposes. The last row indicates the averaged
information. Table 1 discloses that for the unstructured instances (type II),
MAOM-QAP finds the best-known solution for 7 out of the 9 instances (includ-
ing four omitted easy instances) like other algorithms. The average deviation §
from the best-known solution is 0.341 over the 5 instances, which is better than
CPTS, ITS and THGA, but worse than the most recent BMA and BLS. As to
the real-life like instances (type III), MAOM-QAP can attain the best-known
solution for all the instances, except for the largest tail50b. The deviation &
from the best-known solution is only 0.015 over the 5 instances, which matches
the performance of BLS and CPTS.

Table 2 presents our computational results along with those of four refer-
ence algorithms on the instances with grid distances (type IV). We observe that
MAOM-QAP is able to reach the best-known results for 14 out of the 15 in-
stances (including four omitted easy instances) with a deviation ¢ of 0.001 over
the 5 instances, which is among the three best results with BMA and CPTS.
As to the computing times, MAOM-QAP is more computationally expensive.
This issue is further discussed in the last section.

4.2. Impact of perturbation agent on MAOM-QAP

The MAOM-QAP algorithm integrates a perturbation agent which is called
by the local search agents for the purpose of diversification. In this section,
we perform an experiment to assess the usefulness of the perturbation agent.
For this, we compare MAOM-QAP and its variant with the perturbation agent
disabled (the variant is denoted by MAOM-QAP’). We run both of them under
the same condition as specified in Section 4 and report the comparative results
in Tables 3 and 4. These tables disclose that on all the benchmarks, MAOM-
QAP without the perturbation agent fails to reach the best-known result of any
of the 21 instances. These results show that the perturbation agent reinforces
the search performance of MAOM-QAP.

4.8. Impact of crossover agents on MAOM-QAP

In order to show the relative effectiveness of the crossover agents in our
algorithm, we compare MAOM-QAP with and without the crossover agents. As
before, we run both algorithms under the same condition as specified in Section
4 and report the comparative results in Tables 5 and 6 where MAOM-QAP”
is MAOM-QAP without the crossover agents. We observe that the algorithm
without the crossover agents (MAOA-QAP”) performs much worse since it can
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Table 3: Comparison of the MAOM-QAP algorithm with its variant without the perturbation
agent (MAOM-QAP’) on unstructured instances (type II) and Real-life like instances (type

111)

Problem BKS MAOM-QAP MAOM-QAP’
5 t(m) 5 t(m)
taid0a 3139370 0.099(2) 83.5 4.556(0) 0.00
tai50a 4938796 0.320(1) 135.2 7.64(0) 20.3
tai60a 7205962 0.385(2) 178.1 4.71(0) 22.1
tai80a | 13499184 0.426(0) 225 3.898(0) 30.5
tail00a | 21052466 0.470(0) 288 4.74(0) 28.45
Average 0.341 107.6 5.419 11.26
tai50b 458821517 0.000(10) 14.3 13.587(0) 0.00
tai60b 608215054 0.000(10) 38.2 8.758(0) 0.00
tai80b 818415043 0.000(10) 62.7 11.823(0) 0.00
tail00b 1185996137 0.000(10) 91.2 14.182(0) 9.16
tail50b | 498896643 0.077(0) 9982 13.542(0) 83.1
Average 0.015 1030.8 11.447 9.22

Table 4: Comparison of the MAOM-QAP algorithm with its variant without the perturbation

agent (MAOM-QAP’) on grid-based (type IV) instances

Problem BKS MAOA-QAP MAOA-QAP’
5 t(m) 5 t(m)
sko72 66256 0.000(10) 63.3 3.156(0) 0.00
sko81 90998 0.000(10) 208.5 4.581(0) 12
sko90 115534 0.000(10) 256.4 5.789(0) 11.2
skol00a 152002 0.000(10) 321 4.865(0) 15
sko100b 153890 0.000(10) 322.2 5.889(0) 13.8
sko100c 147862 0.000(10) 324.8 4.19(0) 14.1
sko100d 149576 0.000(10) 330 3.86(0) 30
sko100e 149150 0.000(10) 343.3 4.245(0) 25.4
sko100f 149036 0.000(10) 320 3.79(0) 15.4
willo0 | 273038 | 0.000(10) | 355 5.228(0) 18.1
thol50 | 8133398 0.011(0) 523 3.699(0) 45
Average 0.001 229 4.143 13.33
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Table 5: Comparison of the MAOM-QAP algorithm with its variant without the crossover
agents (MAOM-QAP”) on grid-based (type IV) instances

Problem BKS MAOM-QAP MAOM-QAP”
5 t(m) 5 t(m)
sko72 66256 0.000(10) 63.3 1.99(0) 4.5
sko81 90998 0.000(10) 208.5 2.457(0) 12.4
sko90 115534 0.000(10) 256.4 2.75(0) 15.7
skol00a | 152002 | 0.000(10) 321 2.486(0) 12.3
sko100b 153890 0.000(10) 322.2 1.25(0) 11.8
sko100c 147862 0.000(10) 324.8 3.724(0) 13.78
sko100d 149576 0.000(10) 330 2.785(0) 25.89
sko100e 149150 0.000(10) 343.3 1.42(0) 15.9
skol00f | 149036 | 0.000(10) 320 3.75(0) 22.4
willo0 | 273038 0.000(10) 355 2.15(0) 28.2
thol50 | 8133398 0.011(0) 523 3.489(0) 34
Average 0.001 229 2.56 31.5

find the best-known results for only 4 out of the 21 instances. Thus, we conclude
that the crossover agents are indispensable for the performance of our MAOM-
QAP algorithm.

5. Conclusion and perspectives

In this paper, we introduced the distributed multi-agent optimization model
(MAOM) applied to the Quadratic Assignment Problem. The decision maker
agent is the central agent which decides the most suitable agent to activate and
maintains a shared memory to record the elite solutions discovered during the
search. Its decisions are influenced by a learning-based probabilistic strategy
which dynamically adjusts the application probability of a particular action
under a specific condition. On the other hand, the local search agents are
introduced to ensure an intensified examination of specific search zones while
the perturbation agents and crossover agents are used to diversify the search.
The proposed method is thus characterized by its distributed architecture which
supports a distributed implementation of the search algorithm, the interacting
agents which ensures the role of intensified search and diversified search, and the
adaptive decision making with reinforcement learning which allows the search
algorithm to dynamically adjust its exploration strategy of the search space.

The computational study shows that the proposed approach performs well
on the tested benchmark instances in terms of solution quality. On the other
hand, this approach could be further improved by following several directions.
First, the current version of the proposed model is only a proof-of-concept im-
plementation. As such, its computational efficiency is not satisfactory compared
with the current state of the art QAP methods. For a large part, this is due to
the multi-agent platform Jade which is used to implement our proposed model.
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Table 6: Comparison of the MAOM-QAP algorithm with its variant without the crossover
agents (MAOM-QAP”) on unstructured instances (type II) and Real-life like instances (type
III)

Problem BKS MAOM-QAP MAOM-QAP”
5 t(m) 5 t(m)
taid0a 3139370 0.099(2) 83.5 2.8(0) 2.08
tai50a 4938796 0.320(1) 135.2 3.78(0) 15.12
tai60a 7205962 0.385(2) 178.1 2.75(0) 18.4
tai80a 13499184 0.426(0) 225 3.82(0) 20.1
tailOOa 21052466 0.470(0) 288 3.28(0) 20.5
Average 0.341 107.6 2.87 8.46
tai50b 458821517 0.000(10) 14.3 4.78(0) 0.00
tai60b 608215054 0.000(10) 38.2 5.96(0) 0.00
tai80b 818415043 0.000(10) 62.7 5.2(0) 5.2
tail00b | 1185996137 0.000(10) 91.2 5.11(0) 8.4
tail50b 498896643 0.077(0) 9982 6.45(0) 23
Average 0.015 1030.8 5.29 3.66

One interesting perspective to improve the computational efficiency of the model
is to envisage a dedicated implementation. For instance, the method could be
implemented in a distributed manner across a number of machines where each
machine is responsible for running one agent of the model. The configuration
can even be dynamically changed at run-time by moving agents from one ma-
chine to another as and when required. Using such an implementation method,
we can create other types of agents that can be qualified as mobile agents.

Second, reinforcement learning is another key ingredient of the proposed
model and can also be ameliorated. Indeed, better learning will make the agents
more informed and allow them to choose the most appropriate action to perform
when the required condition is met. In the current work, reinforcement learning
is realized with the help of a simple reward mechanism. More elaborated tech-
niques are worth consideration. Moreover, forgetting mechanisms could also be
integrated into the learning mechanism for a better balance of exploration and
exploitation.

Third, the current work focuses on application of the proposed MAOM model
to the QAP. Yet, we argue that the model is a general framework which could be
adapted to solve other difficult problems. In fact, this can be achieved by keeping
the MAOM architecture and specifying the required agents for intensification
and diversification. In this regard, we are investigating this approach to solve
combinatorial search problems like graph coloring (Sghir, Hao, Ben Jaafar, &
Ghédira, 2015) and winner determination in combinatorial auctions.

Finally, this study demonstrates that multi-agnet systems constitute an in-
teresting source of inspiration for designing distributed optimization algorithms.
With the current trend of proliferation of cheap distributed computing facilities,
such an approach would be of great interest for designing powerful intelligent
systems for various search problems.
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